If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+n=300
We move all terms to the left:
n^2+n-(300)=0
a = 1; b = 1; c = -300;
Δ = b2-4ac
Δ = 12-4·1·(-300)
Δ = 1201
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{1201}}{2*1}=\frac{-1-\sqrt{1201}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{1201}}{2*1}=\frac{-1+\sqrt{1201}}{2} $
| 4+4x=3x+25 | | 3x-1/2=17/6 | | 7x-3x=x+2x+3 | | 2x-12=8x+3 | | w=130 | | 7(x.1)-4x-4(x-2)=2 | | F(4)=3x+12 | | 2x+10=2(7-x) | | 44(2x-3)=12 | | 2(2x+1)=3(x4) | | -2d+4=10+5d | | 15=0.3w | | 6x+12=x=27 | | 375=25h | | 1x3=12 | | -5x-4=8x+20 | | 35x=3(5x) | | 49=11n+5 | | y-14=(-9) | | 6x+4=84-4x | | -12x=(-60) | | n/(-8)=8 | | (q-10)+4=20 | | 12x+6=4-8x | | 7^(3x+1)=14 | | 6+r=(-12) | | -5x-4=8x-20 | | p/(-8)=(-20) | | 2(4w+2)/5=-3 | | 7^3x+1=14 | | -5x-4=8x=20 | | 4x-5=0x-9 |